Sticky Note for students ## VSEPR Theory: Electronic Geometry (ED) Vs Molecular Geometry Here a set of molecules have been given with its electronic geometry (based on hybridization) and molecular geometry (based on VSEPR theory) To understand both hybridization and VSEPR theory, initially read hybridization and VSEPR theory from chemical bonding. | | Molecules | Hybridization | ED | Molecular geometry | Bond angles distorted? | |----|------------------|-------------------|-------------------------|---------------------------------------|---| | 1. | CCI ₄ | sp ³ | tetrahedral | Tetrahedral
[No lone pair
(LP)] | No
(109.5°) | | 2. | NH ₃ | sp ³ | tetrahedral | Trigonal
pyramidal
[one
LP] | Yes
Less than 109.5° | | 3. | H ₂ O | sp ³ | tetrahedral | Bent [Two LP] | Yes
Less than 109.5° | | 4. | PF ₃ | sp ³ | tetrahedral | Trigonal
pyramidal
[one LP] | Yes
Less than 109.5° | | 5. | PF ₅ | sp ³ d | trigonal
bipyramidal | trigonal
bipyramidal
[No
LP] | No
90° (axial-equatorial)
120°(equatorial),
180° (axial) | | 6. | SF ₄ | sp ³ d | trigonal
bipyramidal | See-saw
[one LP] | Yes
Less than 90°, 120°
and 180° | | 7. | SF ₆ | sp³d² | octahedral | Octahedral
[No LP] | No | |-----|---------------------------------|--------------------------------|---------------------------|-----------------------------------|------------------------------------| | | | | | | 90° | | 8. | CH₃ ⁺ | Sp ² | Trigonal
planar | Trigonal
planar | No | | | | | piariai | [No LP] | 120° | | 9. | CIO ₂ - | sp ³ | tetrahedral | Bent [Two LP] | Yes
Less than 109.5° | | 10. | ClO₃⁻ | sp ³ | tetrahedral | Trigonal
pyramidal
[one LP] | Yes
Less than 109.5° | | 11. | CIO ₄ - | sp ³ | tetrahedral | Tetrahedral
[No LP] | No
(109.5°) | | 12. | KrF ₂ | sp ³ d | trigonal
bipyramidal | Linear
[three LP] | Yes
180° | | 13. | XeF ₄ | sp ³ d ² | octahedral | Square planar
[Two LP] | No
90° | | 14. | XeF ₆ | sp ³ d ³ | pentagonal
bipyramidal | Distorted octahedral | Yes | | 1 | Con | Н | ыруганнан | (One LP) | 90° | | 15. | XeO ₃ | sp ³ | tetrahedral | Trigonal
pyramidal
[one LP] | Yes
Less than 109.5° | | 16. | N ₃ - | sp | linear | Linear
[No LP] | No | | | | - al | MOLLG | | 180° | | 17. | NO₃⁻ | sp ² | trigonal
planar | trigonal planar
[No LP] | No | | 40 | DC | 2 - 3 - I | 4mi m e 1 | T -bl | 120° | | 18. | BrF ₃ | sp ³ d | trigonal
bipyramidal | T-shaped | Yes | | | | | | [Two LP] | Less than 90°, and
180° (axial) | | 19. | XeO ₂ F ₂ | sp³d | trigonal
bipyramidal | See-saw
[one LP] | Yes | | | | | | | Less than 90°, 120°
and 180° | |-----|--------------------------------|-----------------|--------------------|----------------------------|---------------------------------| | 20. | CO ₃ ² - | sp ² | trigonal
planar | trigonal planar
[No LP] | No | | | | | | | 120° | | 21. | BHCl ₂ | sp ² | trigonal
planar | trigonal planar
[No LP] | No | | | | | | | 120° | | 22. | HCN | sp | linear | Linear | No | | | | 9 | - WIL | [No LP] | | | | | 15 | LIY | AD | 180° | | 23. | I ₃ - | sp³d | trigonal | Linear | No | | | 1 0 | | bipyramidal | [Three LP] | | | | | 0 | | | 180° | | 24. | IF ₅ | sp³d² | octahedral | square planar | Yes | | | | | | (two LP) | | | | 6 | | | | 90° | | 25. | XeF ₃ ⁺ | sp³d | trigonal | T-shaped | Yes | | | | | bipyramidal | (Two LP) | | | | | 91 | | | Less than 90°, 180° | Practice makes perfect Make molecular models using clays to understand electronic geometry vs molecular geometry